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Abstract The false discovery rate (FDR) is the probabil-
ity that a quantitative trait locus (QTL) is false, given that
a QTL has been declared. A misconception in QTL
mapping is that the FDR is equal to the comparison-wise
significance level, αC. The objective of this simulation
study was to determine the FDR in an F2 mapping
population, given different numbers of QTL, population
sizes, and trait heritabilities. Markers linked to QTL were
detected by multiple regression of phenotype on marker
genotype. Phenotypic selection and marker-based recur-
rent selection were compared. The FDR increased as αC

increased. Notably, the FDR was often 10–30 times higher
than the αC level used. Regardless of the number of QTL,
heritability, or size of the genome, the FDR was ≤0.01
when αC was 0.0001. The FDR increased to 0.82 when αC

was 0.05, heritability was low, and only one QTL
controlled the trait. An αC of 0.05 led to a low FDR
when many QTL (30 or 100) controlled the trait, but this
lower FDR was accompanied by a diminished power to
detect QTL. Larger mapping populations led to both lower
a FDR and increased power. Relaxed significance levels of
αC=0.1 or 0.2 led to the largest responses to marker-based
recurrent selection, despite the high FDR. To prevent false
QTL from confusing the literature and databases, a
detected QTL should, in general, be reported as a QTL
only if it was identified at a stringent significance level,
e.g., αC≅0.0001.

Introduction

The development of molecular markers has led to more
than 700 published studies to map QTL (Coors 2001). In
plants, more than 900 QTL have been reported across
QTL studies that involved relatively large (i.e., at least 250
families) mapping populations (Bernardo 2002), and the
total number of reported QTL would undoubtedly be much
larger if studies with smaller mapping populations are also
considered. The total number of reported QTL will
increase as resources continue to be devoted to finding
markers associated with quantitative traits.

Declaring the presence of a QTL always carries some
risk that such declaration is false. Suppose that out of 64
independent markers, 60 are unlinked to QTL in a
mapping population. Out of these 60 markers, three are
incorrectly declared to be linked to a QTL (i.e., false
positives, Fig. 1) and 57 are correctly declared to be
unlinked to QTL (i.e., true negatives, Fig. 1). The
comparison-wise significance level or type I error rate,
denoted by αC, is equal to (number of false positives)/
[(number of false positives) + (number of true negatives)].
In the example in Fig. 1, αC is equal to 3/(3+57)=0.05.
Studies to map QTL have differed in the significance
levels used. Some investigators have used stringent
significance levels of αC≅0.0001, as suggested by a
permutation test to control the experiment-wise error rate
(Churchill and Doerge 1994), whereas other investigators
(Openshaw and Frascaroli 1997) have used a relaxed
significance level of αC=0.1.

Regardless of the significance level used, a misconcep-
tion is that αC is equal to the proportion of false positives
among all declared marker-QTL linkages. In other words,
if 20 QTL have been declared at a significance level of
αC=0.05, a misconception is that only 20×0.05=1 out of
the 20 declared QTL is false. The false discovery rate
(FDR) is defined as the probability that a QTL is false,
given that a QTL has been declared (Benjamini and
Hochberg 1995); it is equal to (number of false positives)/
[(number of false positives) + (number of true positives)].
In the example in Fig. 1, the FDR is equal to 3/(3+1)=0.75
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rather than 0.05. The FDR can therefore be much greater
than αC (Fernando 2002).

A high FDR can result in false leads and wasted
resources in characterizing and exploiting genes for
quantitative traits, as well as confuse the QTL literature
and databases. Knowledge of the magnitude of the FDR
would be helpful for designing QTL mapping experiments
and for properly interpreting their results. Methods have
been proposed to specify a level of αC that controls the
FDR (Benjamini and Hochberg 1995; Weller et al. 1998).
On the other hand, little is known about the FDR that
would arise from a typical QTL mapping experiment in
plants, where the mapping population usually comprises a
cross between two inbreds. The objective of this simula-
tion study was to determine the FDR in an F2 mapping
population given different numbers of QTL, population
sizes, and trait heritabilities. I discuss the implications of
the FDR with regard to gene discovery, QTL introgres-
sion, and marker-based recurrent selection.

Materials and methods

Mapping population

I wrote a Fortran program to simulate QTL mapping and marker-
based selection in a maize (Zea mays L.) F2 population. The
simulation experiment was repeated 2,000 times. Each repeat
differed in the location of QTL and markers and in the genotypes,
genotypic values, and phenotypic values of the F2 individuals.
Two parental inbreds were crossed to form an F1, and the F1 was

selfed to form an F2 population. Sizes of mapping populations in
plants have typically ranged from 100 to 250 (Beavis 1994; Lynch
and Walsh 1998), and in this study a population size of 150 was
considered. The F2 population was segregating at 100 codominant
marker loci and at l =1, 5, 10, 30, or 100 QTL. Linkage among the
QTL was generated by randomly locating the l QTL on 10
chromosomes. The first parent had the favorable allele at an odd-
numbered QTL, and the less-favorable allele at even-numbered
QTL. The sizes of the chromosomes (ranging from 128 to 241
centiMorgans, cM) and of the entire genome (1,749 cM) corre-
sponded to those in a published maize linkage map (Senior et al.
1996). The genome was divided into 100 bins of approximately
1,749/100=17 cM. A marker was assumed to be present within
±5 cM of the midpoint of each bin.
Genotypic values were generated according to metabolic control

theory (Kacser and Burns 1981). This method was chosen because it
is biologically meaningful and it leads to a distribution of gene
effects that is consistent with theoretical arguments (Thompson

1975; Lande and Thompson 1990) and with experimental data
(Kearsey and Farquhar 1998; Bost et al. 1999; Bernardo 2002), i.e.,
few genes with large effects and many genes with small effects. A
linear metabolic pathway with l enzymes, corresponding to the l
QTL, was assumed. The first QTL coded for the enzyme that
converted substrate 1 into substrate 2; the second QTL coded for the
enzyme that converted substrate 2 into substrate 3; and the lth QTL
coded for the enzyme that converted substrate l into the final
product.
At the ith QTL, the enzyme activity for the allele from the first

parental inbred was denoted by Ei1, whereas the enzyme activity for
the allele from the second parental inbred was denoted by Ei2. At the
odd-numbered QTL, these enzyme activities were Ei1=mi+bi and
Ei2=mi –bi, where mi was the midparent enzyme activity and bi was
half the difference between enzyme activities of the homozygotes.
At the even-numbered QTL, the enzyme activities were Ei1=mi –bi
and Ei2=mi +bi. The mi values followed a geometric series.
Specifically, mi was equal to 1–ai/2, where the value of a for an
effective number of loci equal to l was calculated using Eq. 11 of
Lande and Thompson (1990). The value of bi was calculated
assuming a coefficient of variation of 0.15 relative to mi.
Specifically, bi was calculated as (0.15)mi√2 (Bost et al. 1999).
The enzyme activity of the heterozygote was equal to mi, i.e., no
dominance for enzyme activity.
The metabolic flux was considered as the quantitative trait being

studied. For individual k, the genotypic value (Gk) was equal to the
flux (Jk, Kacser and Burns 1981):

Gk ¼ Jk ¼ c=
X

1=Eikð Þ

where Eik was the activity of the ith enzyme in the kth F2 individual,
and c was a constant which did not affect the relative values of Gk.
To reduce rounding errors, c was assumed equal to the square of the
number of QTL.
Even though the QTL in metabolic control analysis exhibit

physiological epistasis, the amount of non-additive genetic variance
for the metabolic flux is often small, particularly when many QTL
are involved (Keightley 1989). Negligible effects of dominance and
epistasis in a metabolic flux indicate that although genotypic values
in this study were simulated for F2 individuals, such genotypic
values also apply to F2-derived families (e.g., F2:3, F2:4, F2:5, etc.).
Furthermore, testcross means of families in a cross-pollinated crop
behave in an additive manner (Bernardo 2002) even if dominance is
present. The results from this study therefore also apply to mapping
QTL for testcross performance in a cross-pollinated crop.
The broad-sense heritability was H=VG/(VG+VE), where VE was

the nongenetic variance. The values of H were 0.20, 0.50, or 0.80.
The phenotypic value of the kth F2 individual (or F2-derived family
or testcross) was obtained as the sum of Jk and a random nongenetic
effect, drawn from a normal distribution with a mean of zero and a
variance of VE. The true value of the genotypic variance (VG) was
needed to specify VE for a given H, but the true value of VG was
unknown. The true value of VG was therefore determined
empirically by generating a large F2 population (20,000 individuals)
and calculating VG as the variance among Gk values.

Detection of marker-QTL linkage

The QTL were mapped by multiple regression of phenotype on
marker genotype. This method was chosen because it simultaneous-
ly considers several linked markers, and the multiple regression
coefficients are expected to directly provide information on the
presence or absence of a linked QTL (Doerge et al. 1994; Whittaker
et al. 1996). The QTL mapping procedure was performed in two
steps. In the first step, multiple regression of phenotypic value on
the number of marker alleles (0, 1, or 2) from the first parental
inbred was performed on a chromosome-by-chromosome basis. A
backwards elimination procedure was used; this procedure was
chosen because it allowed the examination of the full model (i.e., all
markers) for each chromosome. The comparison-wise significance

Fig. 1 Outcomes of a significance test for detecting QTL
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level for retaining a marker in the model was αC=0.0001, 0.001, 0.1,
0.05, 0.1, 0.2, 0.3, or 0.4. In the second step, multiple regression
coefficients were obtained by jointly analyzing all the markers that
were found significant in the per-chromosome analysis.
Suppose three markers are on the same chromosome in the order

M1–M2–M3. The regression coefficient for M2 is expected to be
significant if (1) a QTL is present in the M1–M2 interval, (2) a QTL
is present in the M2–M3 interval, or (3) QTL are present in both the
M1–M2 and M2–M3 intervals (Doerge et al. 1994; Whittaker et al.
1996). In other words, a significant marker regression coefficient
indicates the presence of a flanking QTL. A true positive was
declared whenever a marker (e.g., M2) had a significant regression
coefficient and a QTL was present in either or both of the marker’s
adjacent intervals (e.g., M1–M2 or M2–M3). Conversely, a false
positive was declared whenever a marker had a significant
regression coefficient but a QTL was absent in either of the
marker’s adjacent intervals. Whether or not a QTL was detected
within a specific marker interval was considered as sufficient
information for declaring a true positive or a false positive. The
position of the QTL within the interval, which could be estimated by
interval mapping methods (Lynch and Walsh 1998), was not
considered as necessary information given the objectives of the
study.
Three parameters were estimated. First, the total number of false

positives was determined, and the average FDR was calculated
across the 2,000 repeats of the experiment. Second, the power of the
experiment was calculated as average number of QTL detected
divided by the number of QTL present. Third, the average number
of markers with significant effects was calculated.

Other models

Three variations of the main model were considered to examine the
robustness of the results. First, the use of 50 or 200 markers (instead
of 100) was considered. Second, a mapping population with 400 or
2,000 individuals (instead of 150) was studied. Third, a smaller

genome (rye, Secale cereale L) and larger genome (wheat, Triticum
aestivum L. em Thell) relative to maize were considered. The
chromosome and genomes sizes for rye (seven chromosomes that
comprised 727 cM) and wheat (21 chromosomes that comprised
3,436 cM) were obtained from published linkage maps (Ma et al.
2001; Gupta et al. 2002).

Marker-based recurrent selection

The responses to phenotypic selection and to marker-based recurrent
selection, with different levels of αC, were compared under the main
model. In phenotypic selection, the best 10% of individuals in the
initial F2 population were inter-mated to form the next cycle of
selection. In marker-based recurrent selection, marker scores for
each F2 individual (Lande and Thompson 1990) were calculated
from the multiple regression coefficients for the markers with
significant effects. The best 10% of individuals according to their
marker scores were inter-mated to form the next cycle. Four cycles
of phenotypic and marker-based recurrent selection were simulated.
The same values of the multiple regression coefficients were used
for each cycle of marker-based recurrent selection. Selection
responses were calculated for each cycle, and the experiment was
repeated 2,000 times.

Results

Main model

The FDR increased (Fig. 2) as the comparison-wise
significance level increased. For a trait controlled by a
single QTL and with a heritability of H=0.20, the FDR

Fig. 2 False discovery rate
(FDR, solid lines) and power for
identifying QTL (dashed lines)
for different comparison-wise
significance levels (αC), num-
bers of QTL and trait heritabil-
ities (H)
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increased from <0.01 for αC=0.0001, to 0.82 for αC=0.05.
The FDR was greater than 0.90 when αC was 0.10 or
greater. The FDR increased as αC increased regardless of
the number of QTL. The effects of αC on FDR were less
dramatic, however, when the trait was controlled by a
larger number of QTL. For a trait controlled by 100 QTL
and with a heritability of 0.20, the FDR increased from 0
for αC=0.0001, to 0.07 for αC=0.05. When αC ranged
from 0.1 to 0.4, FDR was about 0.10–0.15.

For a given αC, the decrease in the FDR for large
numbers of QTL was accompanied by a decrease in power
(Fig. 2). For a trait controlled by 100 loci and with a
heritability of 0.20, the proportion of QTL detected
increased from 0.01 for αC=0.0001, to 0.11 for αC=0.05.
In other words, a significance level of αC=0.0001 enabled
the detection of only 1 out of 100 QTL, whereas a
significance level of αC=0.05 enabled the detection of 11
out of 100 QTL. In contrast, when the trait was controlled
by a single QTL, the power to detect this QTL was 0.89–
0.98 when αC ranged from 0.0001 to 0.05.

An increase in heritability from 0.20 to either 0.50 or
0.80 led to a decrease in the FDR and an increase in power
(Fig. 2). The effects of heritability, however, on the FDR
and power were less than the effects of the number of
QTL. When an αC of 0.05 was used to identify QTL for a
trait controlled by 100 loci, an increase in heritability from
0.20 to 0.80 increased the power only from 0.11 to 0.15.
When many QTL controlled the trait, the power therefore
remained low even when heritability was high.

The number of markers with significant effects
increased as αC increased, and was not affected substan-
tially by the number of QTL or by heritability (results not
shown). On average, about 1–2 markers (out of 100) had
significant effects when αC was 0.0001, regardless of the
number of QTL or heritability. The number of markers
with significant effects increased to 1–3 for αC=0.001; 2–5
for αC=0.01; 8–12 for αC=0.05; 14–18 for αC=0.1; 26–29
for αC=0.2; 36–39 for αC=0.3; and 45–48 for αC=0.4.

Other models

An increase in the size of the mapping population led to a
decrease in the FDR and an increase in power. Consider a
trait controlled by 10 QTL, a heritability of 0.50, and αC

values from 0.0001 to 0.05. For a mapping population of
150 F2 individuals, the FDR for these values of αC was
<0.01–0.54 (Fig. 2). The FDR decreased to <0.01–0.45
when the size of the mapping population was increased to
400 (Fig. 3A), and to <0.01–0.33 when the size of the
mapping population was further increased to 2,000
(Fig. 3B).

The FDR was lower when 50 markers (Fig. 3C) rather
than 200 markers (Fig. 3D) were used to map QTL (i.e.,
for a trait controlled by 10 QTL and with a heritability of
0.50). This result, however, must be interpreted with
caution because the probability that a QTL is linked to a
marker (as defined in this study) differs according to the
number of markers used. Consider a trait controlled by
only one QTL and a genome size of 1,749 cM for maize.
When 50 markers are used to map QTL, 2/50=4% of the
markers (i.e., the two markers that flank the QTL) can be
correctly declared as linked to the QTL via multiple
regression. Given that the size of a bin is approximately
1,749/50=35 cM, the maximum distance between the QTL
and its nearest marker is 17.5 cM. When 200 markers are
used, only 2/200=1% of the markers can be correctly
declared as linked to the QTL, but the maximum distance
between the QTL and its nearest marker decreases to about
4 cM. The increase in the FDR with more markers was
therefore accompanied by a tighter linkage between a true
QTL and its flanking markers.

The FDR was lower for a smaller genome (rye, 727 cM)
than for a larger genome (wheat, 3,436 cM). For a trait
controlled by 10 QTL and with a heritability of 0.50, the
FDR in rye ranged from <0.01 to 0.25 when αC ranged
from 0.0001 to 0.05 (Fig. 3E). In contrast, the FDR in
wheat for these values of αC ranged from <0.01 to 0.72
(Fig. 3F). The power, however, remained similar between
the two genomes.

Marker-based recurrent selection

The responses to marker-based recurrent selection were
generally highest when αC was at least 0.1. Across cycles
of selection, the differences in the response to marker-
based recurrent selection were small for αC values
between 0.05 and 0.2. For a trait controlled by 10 QTL
and with a heritability of 0.20, the responses (in √VG) in

Fig. 3A–F False discovery rate
(FDR, solid lines) and power for
identifying QTL (dashed lines)
for a trait controlled by 10 QTL
and with a heritability of 0.50. A
mapping population of 400, B
mapping population of 2,000, C
50 markers, D 200 markers, E
rye genome, F wheat genome
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cycle 1 were similar across different levels of αC, except
for αC≤0.001 (Fig. 4). By cycle 2, however, the responses
to marker-based recurrent selection favored liberal αC

values of 0.1 or 0.2.
By cycle 3, any advantage of marker-based recurrent

selection over phenotypic selection disappeared (Fig. 4).
This result held true for larger numbers of QTL (l=30 or
100) and higher heritabilities (H=0.50 or 0.80), for which
any advantage of marker-based recurrent selection over
phenotypic selection was small to begin with (results not
shown).

Discussion

The results indicated that the FDR can be much higher
than the comparison-wise significance level used to detect
QTL. Regardless of the number of QTL controlling the
trait and the size of the genome, a maximum αC level of
0.0001 should be used to guarantee a FDR of 0.01 or less.
The use of stringent αC levels becomes particularly
important in efforts to discover genes for traits that are
likely controlled by few loci (e.g., l =1–10). Prior
information on the number of loci controlling a trait may
be unavailable, but in certain instances, such as resistance
to Fusarium head blight (Fusarium graminearum) in
wheat or to cyst nematode (Heterodera glycines Inchinoe)
in soybean [Glycine max (L.) Merrill], researchers believe
that relatively few genes control the trait. Studies to map
QTL for these two traits have used αC levels of ≤0.0001
(Anderson et al. 1999; Mudge et al. 1997).

The use of stringent αC levels would reduce the number
of reported QTL, but it should not be viewed as an
impediment to further gene discovery. Much of QTL
mapping will remain exploratory, and putative QTL
detected at a less stringent αC level should be subjected
to further analysis. For example, fine-scale mapping or
candidate gene analysis could be used for genomic regions

where putative QTL have been detected at less stringent
αC levels.

In breeding for a trait controlled by a few genes, the
QTL are likely to be exploited by introgressing the QTL
with significant effects into elite germplasm (Dudley
1993). This approach has been tried for different traits in
several species [see Bernardo (2002) for a review]. In this
situation, the FDR should be kept low so that resources are
not wasted in introgressing false QTL. Perhaps the success
or failure in attempts to introgress QTL may be partly due
to the αC level used to identify QTL. In rice, for example,
Shen et al. (2001) introgressed four QTL for deeper roots
from one parent to the other parent of the mapping
population. Three QTL had been detected at a significance
level of αC=0.05, whereas the fourth QTL had been
detected at αC=0.001 (Yadav et al. 1997). Fewer than 50%
of the comparisons involving near-isogenic lines had
improved root depth. While the use of a relaxed αC level
of 0.05 could not be construed as having directly caused
the inconsistent results, one may speculate whether part of
the problem was in identifying the QTL in the first place,
rather than in introgressing and validating the four QTL.

For a trait controlled by many loci, such as yield in
maize, QTL have been exploited not by introgressing the
QTL into elite germplasm, but by marker-based recurrent
selection (Edwards and Johnson 1994; Johnson 2001). In
this procedure, which was simulated in this study, the
mean of the population is improved by a few cycles of
selection based on marker information. An improved base
population leads to a better chance of obtaining superior
families or inbreds, and no direct attempt is made at
developing an inbred that has the favorable allele at all
markers with significant effects. Hospital et al. (1997)
found that for a trait controlled by 25 QTL, a liberal αC

level should be used in marker-based selection. This result
was confirmed in the current study, which considered
different numbers of QTL. The long-term advantage of
phenotypic selection over marker-based recurrent selection
also agreed with the results of Hospital et al. (1997).

The optimum αC level for marker-based recurrent
selection was 0.1–0.2. Such relaxed αC levels led to the
largest responses to selection and a greater power for the
experiment, but at the expense of a large number of
markers that were incorrectly declared to have significant
effects. The use of a stringent αC level of 0.0001 led to
insufficient power (e.g., 0.01–0.02 for a trait with 100
QTL and a heritability of 0.20–0.50) for detecting QTL
and, consequently, poor response to selection. The results
confirmed that a type I error has little impact on marker-
based recurrent selection, and that the main drawback of a
type I error is the additional expense in scoring markers
that need not have been scored.

Increasing the size of the mapping population leads to
both increased power (Lande and Thompson 1990, Beavis
1994) and a lower FDR. In practice, however, large
mapping populations may not be feasible because breeders
tend to conduct marker-based recurrent selection in several
populations simultaneously. The use of larger mapping
populations would lead to fewer populations being

Fig. 4 Response to phenotypic selection and marker-based
recurrent selection with different comparison-wise significance
levels (αC) for detecting QTL. The trait was controlled by 10
QTL and had a heritability of 0.20
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improved, and many breeders prefer to select in a large
number of populations with relatively few progenies,
instead of in a few populations with many progenies
(Baker 1984; Hallauer 1990).

In conclusion, the question of “What proportion of
declared QTL in plants are false?” cannot be answered
definitely because QTL studies have used different
significance levels, traits differ in the number of under-
lying QTL, and experiments have used different types of
mapping populations (e.g., backcross instead of F2
populations). The results do indicate, however, that for a
trait controlled by few genes, the proportion of falsely
declared QTL can be 10–30 times higher than the
comparison-wise significance level used. In general, a
QTL should be reported in the literature only if it has been
identified at a stringent significance level (e.g.,
αC≅0.0001). The FDR, for a given αC, is affected by the
number of QTL and trait heritability (Fig. 2), as well by as
the size of the mapping population, distance between
markers, and size of the linkage map (Fig. 3). Methods
proposed by Benjamini and Hochberg (1995) and Weller
et al. (1998) can be used to estimate the level of αC that
maintains a specific FDR. Relaxed significance levels
(e.g., αC=0.1–0.2) are preferred in marker-based recurrent
selection, but in this situation only those QTL that meet a
more stringent significance level should be declared as
QTL.
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